# FINITE ELEMENT COMPUTATION OF THREE-DIMENSIONAL ELASTOACOUSTIC VIBRATIONS 

A. Bermúdez, L. Hervella-Nieto<br>Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, Spain

AND
R. Rodríguez

Departamento de Ingeniería Matemática, Universidad de Concepción, Chile
(Received 17 September 1997, and in final form 16 July 1998)

In this paper, the interior elastoacoustic problem in a 3D domain is solved. Displacement variables are used for both the fluid and the solid. To avoid the typical spurious modes of this formulation, a non-standard discretization is used, consisting of classical linear tetrahedral finite element for the solid and Raviart-Thomas elements of lowest order for the fluid. A new unknown is introduced on the interface between solid and fluid to impose the transmission conditions.
(C) 1999 Academic Press

## 1. INTRODUCTION

The computation of the motion of an elastic solid interacting with a fluid is an important problem which occurs in many engineering applications. During the last few years, a large amount of work has been devoted to this subject. A general overview can be found in the monogaphs by Morand and Ohayon [1] and Conca et al. [2], where numerical methods and further references are also given.

This paper deals with a particular fluid-solid interaction: the elastoacoustic problem. It is concerned with the determination of the small amplitude vibration modes of an elastic structure containing an ideal compressible fluid (see Figure 1). In this case, the displacements are small enough to produce a linear response of the structure. An homogeneous fluid is considered and the effects of gravity are neglected. Also other usual simplifications in this kind of problem are adopted, namely, that the fluid velocities are small enough so that the convective effects can be neglected, and that the viscous effects in the fluid are not relevant (see, for instance, the book by Zienkiewicz and Taylor [3]).

The problem of determining the vibration of a fluid alone is usually treated by choosing the pressure as the primary variable [4]. However, for coupled systems, such a choice leads to non-symmetric eigenvalue problems [3] whose
computational solution involves considerable complications. Because of this, the fluid part has been alternatively described by different variables: for instance, Everstine [5] has used the velocity potential, obtaining a quadratic eigenvalue problem; Morand and Ohayon [6] have used both the pressure and the displacement potential, obtaining a symmetric problem.

Several authors have used primitive variable formulations (i.e., displacements in both fluid and solid), for example, in frequency calculations and response spectrum analysis, because they do not require any special interface conditions or new solution strategies. This approach could be applied to the solution of a broad range of problems (in particular non-linear ones) [7,8] and leads to sparse symmetric matrices. However a serious drawback of this formulation was pointed out several years ago by Kiefling and Feng [9]: they showed that it suffers from the presence of spurious circulation modes, with no physical entity, when the displacement in the fluid is discretized by standard finite elements.

Since then several approaches have been proposed to avoid this drawback. Hamdi et al. [10] introduced an irrotational constraint by means of a penalty method. This technique does not attain the complete elimination of spurious modes, but they are pushed towards higher frequencies and therefore do not appear among the first modes. This fact was theoretically justified by Bermúdez and Rodríguez [11]. However, Olson and Bathe [12] demonstrated that the method "locks up" in the frequency analysis of a solid vibrating in a fluid cavity. They also showed that reduced integration performed on the penalty formulation yields some improvement in results but does not ensure solution convergence in a general case.

On the other hand, Chen and Taylor [13] proposed a four-node element with reduced integration in the stiffness matrix of the fluid combined with a projection


Figure 1. Fluid and solid domains in 2D.
on the element mass matrix. Numerical experiments show that this method is useful to eliminate spurious modes but, up to now, no theoretical analysis has been performed.

More recently, Bermúdez et al. [11, 14] introduced an alternative approach. It consists of using different finite element spaces for the solid and the fluid. For two-dimensional problems, standard three-node triangles are used for the solid, whereas so-called "edge elements" are chosen for the fluid displacements. These "edge elements", introduced by Raviart and Thomas [15], are incomplete linear polynomials; their degrees of freedom are located at the edges of the triangles and represent the constant normal components of the displacement field along them. Non-existence of spurious modes has been mathematically proved in reference [14], whereas numerical tests showing the good performance of the method are provided in reference [11].

In both the above mentioned papers, the method is applied to two-dimensional problems, which implies an important limitation for practical applications. On the other hand, as remarked by Wang and Bathe [8] the coupling in this approach needs special considerations because of the fact that the degrees of freedom of the fluid elements are not those of the structure.

In this paper, a variant of this method avoiding this drawback is presented and it is tested with numerical experiments over different three-dimensional examples. This variant consists of introducing a new variable, the pressure on the fluid-solid interface, which allows the coupling kinematic condition to be imposed in a simpler way. Furthermore, this methodology would allow incompatible meshes to be used on the interface (i.e., meshes on the fluid and the solid domain not necessarily matching on the common boundary).

The outline of the paper is as follows. In section 2 the spectral problem to be solved is stated along with a weak symmetric formulation involving the displacements in both, the fluid and the solid and the interface pressure. In section 3 the finite element method is introduced and the main theoretical results concerning error estimates and non-existence of spurious eigenmodes are summarized. In section 4 the problem is written in matrix form and it is shown that it is a well posed generalized eigenvalue problem. Finally, in section 5, numerical results for some 3D test examples are given in order to validate the proposed methodology.

## 2. STATEMENT OF THE PROBLEM

$\Omega_{F}$ and $\Omega_{S}$ denote the three-dimensional interior and exterior domains, occupied by the fluid and the solid, respectively. The exterior boundary of $\Omega_{S}$ is the union of two parts, $\Gamma_{D}$ and $\Gamma_{N}$, the structure being fixed on $\Gamma_{D}$. ndenotes the normal exterior vector along $\Gamma_{N}, \Gamma_{I}$ denote the interface between the solid and the fluid, and $\boldsymbol{v}$ is its unit normal vector pointing outwards $\Omega_{F}$. Figure 1 shows corresponding two-dimensional domains for a better understanding of the notation.

If an external force $\mathbf{F}$ is applied on $\Gamma_{N}$, the equations describing the motion of the coupled system can be written in the following way [1]:

$$
\begin{gathered}
\sum_{j=1}^{3} \frac{\partial \sigma_{i j}(\mathbf{w})}{\partial x_{j}}=\rho_{s} \frac{\partial^{2} w_{i}}{\partial t^{2}} \quad \text { in } \quad \Omega_{S}, \quad i=1,2,3, \\
-\frac{\partial p}{\partial x_{i}}=\rho_{F} \frac{\partial^{2} u_{i}}{\partial t^{2}} \quad \text { in } \quad \Omega_{F}, \quad i=1,2,3, \\
p=-\rho_{F} c^{2} \operatorname{div} \mathbf{u} \quad \text { in } \quad \Omega_{F}, \quad \mathbf{u} \cdot \mathbf{v}=\mathbf{w} \cdot \boldsymbol{v} \quad \text { on } \quad \Gamma_{I}, \\
\sigma(\mathbf{w}) \mathbf{v}=-p \mathbf{v} \quad \text { on } \quad \Gamma_{I}, \quad \mathbf{w}=\mathbf{0} \quad \text { on } \quad \Gamma_{D}, \quad \sigma(\mathbf{w}) \mathbf{n}=\mathbf{F} \quad \text { on } \Gamma_{N} .
\end{gathered}
$$

In the above expressions $x=\left(x_{1}, x_{2}, x_{3}\right)$ are the co-ordinates of a material point either in the solid or in the fluid; $p(x)$ is the fluid pressure; $\mathbf{w}(x)=\left(w_{1}, w_{2}, w_{3}\right)$ and $\mathbf{u}(x)=\left(u_{1}, u_{2}, u_{3}\right)$ are the displacement vectors of the solid and the fluid, respectively; $\operatorname{div} \mathbf{u}=\Sigma_{j=1}^{3} \partial u_{j} / \partial x_{j}$ is the divergence of the fluid displacement field; $\sigma(\mathbf{w})$ is the stress tensor in the structure which (upon assuming a linear isotropic elastic material) is related to the solid displacements $\mathbf{w}$ by Hooke's law [16]:

$$
\sigma_{i j}(\mathbf{w})=\frac{E v_{s}}{\left(1+v_{s}\right)\left(1-2 v_{s}\right)} \sum_{k=1}^{3} \varepsilon_{k k}(\mathbf{w}) \delta_{i j}+\frac{E}{1+v_{s}} \varepsilon_{i j}(\mathbf{w}), \quad i, j=1,2,3
$$

where $\varepsilon_{i j}(\mathbf{w})=\frac{1}{2}\left(\partial w_{i} / \partial x_{j}+\partial w_{j} / \partial x_{i}\right)$ is the linear strain tensor, $E$ is the Young modulus and $v_{S}$ the Poisson ratio of the structure; finally $\rho_{F}$ and $\rho_{S}$ are the respective densities and $c$ is the sound speed in the fluid.

For determining the free vibration modes of the coupled system, no exterior forces are considered and harmonic pressure and motions are looked for: i.e.,

$$
\begin{gathered}
\mathbf{F}(x, t)=\mathbf{0}, \quad x \in \Gamma_{N} \quad p(x, t)=P(x) \mathrm{e}^{\mathrm{i} \omega t}, \quad x \in \Omega_{F}, \\
\mathbf{u}(x, t)=\mathbf{U}(x) \mathrm{e}^{\mathrm{i} \omega t}, \quad x \in \Gamma_{F}, \quad \mathbf{u}(x, t)=\mathbf{W}(x) \mathrm{e}^{\mathrm{i} \omega t}, \quad x \in \Omega_{S},
\end{gathered}
$$

$\omega$ being the angular frequency of the mode. By replacing these expressions into the above equations, the following eigenvalue problem is obtained.

Find an angular frequency $\omega$ and amplitudes of pressure and displacement fields $P, \mathbf{U}$ and $\mathbf{W}$, not all identically zero, satisfying

$$
\begin{gather*}
-\sum_{j=1}^{3} \frac{\partial \sigma_{i j}(\mathbf{W})}{\partial x_{j}}=\omega^{2} \rho_{s} W_{i} \quad \text { in } \quad \Omega_{S}, \quad i=1,2,3  \tag{1}\\
\frac{\partial P}{\partial x_{i}}=\omega^{2} \rho_{F} U_{i} \quad \text { in } \quad \Omega_{F}, \quad i=1,2,3  \tag{2}\\
P=-\rho_{F} c^{2} \operatorname{div} \mathbf{U} \quad \text { in } \quad \Omega_{F}, \quad \mathbf{U} \cdot \boldsymbol{v}=\mathbf{W} \cdot \boldsymbol{v} \quad \text { on } \quad \Gamma_{I},  \tag{3,4}\\
\sigma(\mathbf{W}) \mathbf{v}=-P \boldsymbol{v} \quad \text { on } \quad \Gamma_{I}, \quad \mathbf{W}=\mathbf{0} \quad \text { on } \quad \Gamma_{D}, \quad \sigma(\mathbf{W}) \mathbf{n}=\mathbf{0} \quad \text { on } \quad \Gamma_{N} \tag{5-7}
\end{gather*}
$$

To give a variational formulation of problem (1-7), equation (1) is integrated multiplied by a virtual solid displacement $\mathbf{Z}$ satisfying the Dirichlet condition (6) and Green's formula is used to obtain

$$
\int_{\Omega_{s}} \sigma(\mathbf{W}): \varepsilon(\mathbf{Z}) \mathrm{d} x+\int_{\Gamma_{I}} \sigma(\mathbf{W}) \boldsymbol{v} \cdot \mathbf{Z} \mathrm{d} \Gamma=\omega^{2} \int_{\Omega_{S}} \rho_{s} \mathbf{W} \cdot \mathbf{Z} \mathrm{~d} x
$$

Then equation (2) is integrated multiplied by a virtual fluid displacement $\mathbf{Y}$ and Green's formula and equation (3) are used to obtain

$$
\int_{\Omega_{F}} \rho_{F} c^{2} \operatorname{div} \mathbf{U} \operatorname{div} \mathbf{Y} \mathrm{~d} x+\int_{\Gamma_{I}} P \mathbf{Y} \cdot \boldsymbol{v} \mathrm{~d} \Gamma=\omega^{2} \int_{\Omega_{F}} \rho_{F} \mathbf{U} \cdot \mathbf{Y} \mathrm{~d} x
$$

Now, by adding both equations and using equation (5) one has

$$
\begin{aligned}
& \int_{\Omega_{F}} \rho_{F} c^{2} \operatorname{div} \mathbf{U} \operatorname{div} \mathbf{Y} \mathrm{~d} x+\int_{\Omega_{S}} \sigma(\mathbf{W}): \varepsilon(\mathbf{Z}) \mathrm{d} x+\int_{\Gamma_{I}} P(\mathbf{Y} \cdot \boldsymbol{v}-\mathbf{Z} \cdot \mathbf{v}) \mathrm{d} \Gamma \\
& \quad=\omega^{2}\left(\int_{\Omega_{F}} \rho_{F} \mathbf{U} \cdot \mathbf{Y} \mathrm{~d} x+\int_{\Omega_{S}} \rho_{s} \mathbf{W} \cdot \mathbf{Z} \mathrm{~d} x\right)
\end{aligned}
$$

Finally, the kinematic constraint (4) between both displacement fields is imposed in a weak way by integrating this equation multiplied by any test function $Q$ defined on $\Gamma_{I}$ :

$$
\int_{\Gamma_{I}} Q(\mathbf{U} \cdot \mathbf{v}-\mathbf{W} \cdot \mathbf{v}) \mathrm{d} \Gamma=0
$$

All together one obtains the following spectral hybrid problem.
Find an angular frequency $\omega$, displacement fields $\mathbf{U}: \Omega_{F} \rightarrow \mathbb{R}^{3}$ and $\mathbf{W}: \Omega_{S} \rightarrow \mathbb{R}^{3}$ and interface pressure $P: \Gamma_{I} \rightarrow \mathbb{R}$, with $\mathbf{U}, \mathbf{W}$ and $P$ not all identically zero, satisfying

$$
\begin{align*}
& \int_{\Omega_{F}} \rho_{F} c^{2} \operatorname{div} \mathbf{U} \operatorname{div} \mathbf{Y} \mathrm{~d} x+\int_{\Omega_{S}} \sigma(\mathbf{W}): \varepsilon(\mathbf{Z}) \mathrm{d} x+\int_{\Gamma_{I}} P(\mathbf{Y} \cdot \boldsymbol{v}-\mathbf{Z} \cdot \mathbf{v}) \mathrm{d} \Gamma \\
& \quad=\omega^{2}\left(\int_{\Omega_{F}} \rho_{F} \mathbf{U} \cdot \mathbf{Y} \mathrm{~d} x+\int_{\Omega_{S}} \rho_{S} \mathbf{W} \cdot \mathbf{Z} \mathrm{~d} x\right), \quad \forall(\mathbf{Y}, \mathbf{Z}) \in \chi, \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Gamma_{I}} Q(\mathbf{U} \cdot \boldsymbol{v}-\mathbf{W} \cdot \boldsymbol{v}) \mathrm{d} \Gamma=0, \quad \forall Q \in \mathscr{P} \tag{9}
\end{equation*}
$$

In the first equation,

$$
\sigma(\mathbf{W}):: \varepsilon(\mathbf{Z})=\sum_{i, j=1}^{3} \sigma_{i j}(\mathbf{W}) \varepsilon_{i j}(\mathbf{Z})
$$

is the standard inner product of second order tensors and

$$
\chi=\left\{(\mathbf{Y}, \mathbf{Z}): \mathbf{Y}: \Omega_{F} \rightarrow \mathbb{R}^{3} \quad \text { and } \quad \mathbf{Z}: \Omega_{S} \rightarrow \mathbb{R}^{3} \quad \text { with } \quad \mathbf{Z}=\mathbf{0} \quad \text { on } \quad \Gamma_{D}\right\}
$$

is the set of pairs of virtual displacements. In the second one, $\mathscr{P}$ is the set of arbitrary functions $Q: \Gamma_{I} \rightarrow \mathbb{R}$.

Note that equation (9) imposes the kinematic constraint (4) on any solution of this problem. Denote by $\mathscr{V}$ the set of kinematically admissable virtual displacements (i.e., those satisfying this constraint):

$$
\mathscr{V}=\left\{(\mathbf{Y}, \mathbf{Z}) \in \chi: \mathbf{Y} \cdot \boldsymbol{v}=\mathbf{Z} \cdot \boldsymbol{v} \quad \text { on } \quad \Gamma_{I}\right\} .
$$

Then, any solution of the hybrid spectral problem $(8,9)$ also provides a solution of the following pure displacement eigenvalue problem.

Find an angular frequency $\omega$ and a pair of displacements $(\mathbf{U}, \mathbf{W}) \in \mathscr{V}$, with $\mathbf{U}$ and $\mathbf{W}$ not both identically zero, satisfying

$$
\begin{align*}
& \int_{\Omega_{F}} \rho_{F} c^{2} \operatorname{div} \mathbf{U} \operatorname{div} \mathbf{Y} \mathrm{~d} x+\int_{\Omega_{S}} \sigma(\mathbf{W}): \varepsilon(\mathbf{Z}) \mathrm{d} x \\
& \quad=\omega^{2}\left(\int_{\Omega_{F}} \rho_{F} \mathbf{U} \cdot \mathbf{Y} \mathrm{~d} x+\int_{\Omega_{S}} \rho_{S} \mathbf{W} \cdot \mathbf{Z} \mathrm{~d} x\right), \quad \forall(\mathbf{Y}, \mathbf{Z}) \in \mathscr{V}, \tag{10}
\end{align*}
$$

As it is typical in displacement formulations, $\omega=0$ is an eigenfrequency of this problem (and consequently of problem $(8,9)$ ) with an infinite-dimensional eigenspace

$$
\mathscr{K}=\left\{(\mathbf{U}, \mathbf{0}) \in \chi: \operatorname{div} \mathbf{U}=0 \quad \text { in } \quad \Omega_{F} \quad \text { and } \quad \mathbf{U} \cdot \boldsymbol{v}=0 \quad \text { on } \quad \Gamma_{I}\right\} .
$$

These eigenmodes consist of pure rotational fluid motions inducing neither vibrations in the solid nor variations of pressure in the fluid. They are mathematical solutions of the eigenproblem with no physical entity. They do not correspond to vibration modes of the coupled system, but they arise because no irrotational constraint is imposed to the fluid displacements.

The rest of the eigenfrequencies of problem $(8,9)$ are strictly positive and correspond to actual vibrations of the coupled fluid-solid system. The whole spectrum of the problem can be characterized by using the spectral theorem for compact operators and the fact that the fluid displacements associated with $\omega=0$ are orthogonal to any irrotational fluid displacement (i.e., those of the form


Figure 2. Raviart-Thomas finite element.
$\mathbf{U}=\boldsymbol{\operatorname { g r a d }} \phi$, for some potential $\phi$ ). In fact, the following result, proved in reference [18], yields:

The solutions of problem $(8,9)$ are $\omega=0$ and a sequence of strictly positive eigenfrequencies of finite multiplicity $\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \ldots$ converging to $\infty$. The set of eigenmodes of $\omega=0$ consists of pure rotational motions of the fluid, whereas those of $\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \ldots$ are irrotational on the fluid.

## 3. FINITE ELEMENT DISCRETIZATION

In spite of the fact that problems $(8,9)$ and $(10)$ are mathematically equivalent, from the computational point of view it is much simpler to deal with the first one. We are going to solve this problem by using a finite element discretization. Consider regular partitions in tetrahedra of $\Omega_{F}$ and $\Omega_{S}$. Let $h$ denote the mesh size of both "triangulations".

The simplest method consists of using classical four-node tetrahedral elements for each component of both displacements (i.e., continuous functions which are linear on each tetrahedron, their degrees of freedom being the displacements at the vertices of the mesh). However, this is not a suitable choice since spurious modes arise when such a discretization is used [9, 10].

As stated above, zero frequency eigenmodes of the continuous problem $(8,9)$ fill an infinite dimensional subspace of circulation fluid motions with no physical entity. Therefore, the finite elements to be used should lead to a discrete problem having zero as an eigenvalue with a large enough associated eigenspace consisting of discrete rotational fluid motions. Otherwise, spurious modes with non-zero frequencies placed among the physical ones would arise polluting the numerical results. This is what happens, for instance, when standard finite elements are used for the fluid displacements.

Instead, the lowest order Raviart-Thomas elements [15] are used for the displacement field in the fluid $\mathbf{U}_{b}$ (see Figure 2). These elements consist of vector valued functions which are incomplete linear polynomials of the form

$$
\mathbf{U}_{h}(x)=\left(a+d x_{1}, b+d x_{2}, c+d x_{3}\right), \quad a, b, c, d \in \mathbb{R},
$$

when restricted to each tetrahedron.
These polynomial functions have constant normal components on any plane of the space. In fact, consider a general plane of equation $\alpha x_{1}+\beta x_{2}+\gamma x_{3}=\delta$ with coefficients normalized such that $\alpha^{2}+\beta^{2}+\gamma^{2}=1$. Then $\mathbf{n}=(\alpha, \beta, \gamma)$ is its unit normal vector and, for any point $\left(x_{1}, x_{2}, x_{3}\right)$ in this plane, we have

$$
\begin{aligned}
\mathbf{U}_{h}\left(x_{1}, x_{2}, x_{3}\right) \cdot \mathbf{n} & =\alpha\left(a+d x_{1}\right)+\beta\left(b+d x_{2}\right)+\gamma\left(c+d x_{3}\right) \\
& =\alpha a+\beta b+\gamma c+\left(\alpha x_{1}+\beta x_{2}+\gamma x_{3}\right) d \\
& =\alpha a+\beta b+\gamma c+\delta d,
\end{aligned}
$$

which is a constant independent of the point $\left(x_{1}, x_{2}, x_{3}\right)$ of the plane.
In particular these fields have constant normal components on each of the four faces of the tetrahedron. Moreover, the values of these constants define a unique polynomial function of this type. To see this, let the equations of the four planes defining a tetrahedron be given by

$$
\begin{equation*}
\alpha_{i} x_{1}+\beta_{i} x_{2}+\gamma_{i} x_{3}=\delta_{i}, \quad i=1, \ldots, 4, \tag{11}
\end{equation*}
$$

with $\alpha_{i}^{2}+\beta_{i}^{2}+\gamma_{i}^{2}=1$ as above. The problem is to find four numbers $a, b, c, d$ such that

$$
\begin{equation*}
\left(a+d x_{1}\right) \alpha_{i}+\left(b+d x_{2}\right) \beta_{i}+\left(c+d x_{3}\right) \gamma_{i}=V_{i} \tag{12}
\end{equation*}
$$

where $V_{i}, i=1, \ldots, 4$, are arbitrarily prescribed values. By using equation (11), the linear system (12) becomes

$$
\begin{aligned}
\alpha_{1} a+\beta_{1} b+\gamma_{1} c+\delta_{1} d & =V_{1} \\
\alpha_{2} a+\beta_{2} b+\gamma_{2} c+\delta_{2} d & =V_{2} \\
\alpha_{3} a+\beta_{3} b+\gamma_{3} c+\delta_{3} d & =V_{3} \\
\alpha_{4} a+\beta_{4} b+\gamma_{4} c+\delta_{4} d & =V_{4}
\end{aligned}
$$

Since all planes have to be "independent" (i.e., any two of them cannot be parallel), this system has a unique solution.

The global discrete displacement field $\mathbf{U}_{h}$ is allowed to have discontinuous tangential components on the faces of the tetrahedra of the triangulation but its (constant) normal components must be continuous through these faces, these constant values being its degrees of freedom. Because of this, div $\mathbf{U}_{h}$ is globally well defined on $\Omega_{F}$.

For each component of the displacements in the solid, standard four-node tetrahedral elements are used.

Finally, the interface pressure is discretized by means of piecewise constant functions.

So, let

$$
\begin{gathered}
\chi_{h}=\left\{\left(\mathbf{Y}_{h}, Z_{h}\right): \mathbf{Y}_{h}\right. \text { Raviart-Thomas, } \\
\left.\mathbf{Z}_{h} \text { four-node tetrahedral and }\left.\mathbf{Z}_{h}\right|_{\Gamma_{D}}=\mathbf{0}\right\},
\end{gathered}
$$

and let $\mathscr{P}_{h}$ be the space of functions defined on $\Gamma_{I}$ which are constant on each face of the triangulation on the interface. We have the following discrete hybrid problem.

Find a real number $\omega_{h}$, a pair of displacements $\left(\mathbf{U}_{h}, \mathbf{W}_{h}\right) \in \chi_{h}$ and an interface pressure $P_{h} \in \mathscr{P}_{h}$, with $\mathbf{U}_{h}, \mathbf{W}_{h}$ and $P_{h}$ not all identically zero, satisfying

$$
\begin{align*}
& \int_{\Omega_{F}} \rho_{F} c^{2} \operatorname{div} \mathbf{U}_{h} \operatorname{div} \mathbf{Y}_{h} \mathrm{~d} x+\int_{\Omega_{S}} \sigma\left(\mathbf{W}_{h}\right): \varepsilon\left(\mathbf{Z}_{h}\right) \mathrm{d} x+\int_{\Gamma_{I}} P_{h}\left(\mathbf{Z}_{h} \cdot \boldsymbol{v}-\mathbf{Y}_{h} \cdot \mathbf{v}\right) \mathrm{d} \Gamma \\
& =\omega_{h}^{2}\left(\int_{\Omega_{F}} \rho_{F} \mathbf{U}_{h} \cdot \mathbf{Y}_{h} \mathrm{~d} x+\int_{\Omega_{S}} \rho_{S} \mathbf{W}_{h} \cdot \mathbf{Z}_{h} \mathrm{~d} x\right), \quad \forall\left(\mathbf{Y}_{h}, \mathbf{Z}_{h}\right) \in \chi_{h}, \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Gamma_{I}} Q_{h}\left(\mathbf{W}_{h} \cdot \boldsymbol{v}-\mathbf{U}_{h} \cdot \boldsymbol{v}\right) \mathrm{d} \Gamma=0, \quad \forall Q_{h} \in \mathscr{P}_{h} \tag{14}
\end{equation*}
$$

Equation (14) imposes weakly the kinematic constraint on the discrete displacements. By using in this equation a test function $Q_{h}$ taking the value 1 on a particular face $\mathscr{F}$ on the interface $\Gamma_{I}$ and vanishing on all the other faces, one has

$$
\begin{equation*}
\int_{\mathscr{F}}\left(\mathbf{U}_{h} \cdot \boldsymbol{v}-\mathbf{W}_{h} \cdot \boldsymbol{v}\right) \mathrm{d} \Gamma=0 \tag{15}
\end{equation*}
$$

From this equation it is deduced that, in general, the normal components $\mathbf{U}_{h} \cdot \boldsymbol{v}$ and $\mathbf{W}_{h} \cdot \boldsymbol{v}$ do not coincide on the whole $\Gamma_{I}$. Indeed, the Raviart-Thomas finite elements used for the fluid displacements have constant per face normal components, whreas those of the four-node elements used in the solid are linear. Then equation (15) implies that both coincide only at the barycenter $M$ of each face $\mathscr{F} \subset \Gamma_{I}$. In fact,

$$
\left[\mathbf{U}_{h}(M) \cdot \boldsymbol{v}\right] \operatorname{area}(\mathscr{F})=\int_{\mathscr{F}} \mathbf{U}_{h} \cdot \boldsymbol{v} \mathrm{~d} \Gamma=\int_{\mathscr{F}} \mathbf{W}_{h} \cdot \boldsymbol{v} \mathrm{~d} \Gamma=\left[\mathbf{W}_{h}(M) \cdot \boldsymbol{v}\right] \operatorname{area}(\mathscr{F}),
$$

the latter because the barycenter rule is exact for linear functions.
Let us remark that $\omega_{h}=0$ is an eigenfrequency of the discrete problem $(13,14)$ and the set of its associated eigenmodes is $\mathscr{K}_{h}=\mathscr{K} \cap \chi_{h}$, which provides a good approximation of the eigenspace $\mathscr{K}$ of $\omega=0$ in the continuous problem (see reference [18]). In this reference, the following approximation result has also been
proved under reasonable hypotheses on the regularity of the three-dimensional domains.

Let $\omega_{1} \leqslant \omega_{2} \leqslant \cdots \leqslant \omega_{n} \leqslant \cdots$ and $\omega_{h 1} \leqslant \omega_{h 2} \leqslant \cdots \leqslant \omega_{h N_{h}}$ be the strictly positive eigenfrequencies of the continuous and the discrete problems, respectively (in both cases repeated as many times as their multiplicity). Then there exists a constant $r$ between 0 and 1 such that

$$
\left|\omega_{n}-\omega_{h n}\right| \leqslant C h^{2 r}
$$

This property shows, in particular, that no spurious mode can arise. Moreover, the $n$th strictly positive eigenfrequency of the discrete problem approximates that of the continuous one with an error of order $h^{2 r}$, which depends on the geometry of both domains, $\Omega_{F}$ and $\Omega_{S}$. Let us remark that, for instance, for a convex fluid domain, the constant $r$ determining the order of convergence is the same as that for the computation of the vibration modes of the structure in vacuo by using classical four-node linear elements.

## 4. MATRICIAL DESCRIPTION

In the previous section, a discrete formulation of our problem has been stated. Now, a matricial description of it is given and it is shown that it is a well posed symmetric generalized eigenvalue problem involving sparse matrices.

For the sake of simplicity, meshes for the solid and the fluid are considered, which are compatible on the interface. However, it is important to notice that this is not at all a requirement of the method. Indeed, the interface pressure $P$ could be discretized by using a triangulation on the interface independent of the fluid and solid meshes.

Let us call $\tilde{\mathbf{U}}_{h}, \tilde{\mathbf{W}}_{h}, \tilde{\mathbf{P}}_{h}, \tilde{\mathbf{Y}}_{h}$ and $\tilde{\mathbf{Z}}_{h}$ the vectors of nodal components of $\mathbf{U}_{h}, \mathbf{W}_{h}$, $P_{h}, \mathbf{Y}_{h}$ and $\mathbf{Z}_{h}$, respectively. The matrices associated with the bilinear forms in the variational formulation are defined by

$$
\begin{gathered}
\tilde{\mathbf{Z}}_{h}^{t} K_{S} \tilde{\mathbf{W}}_{h}=\int_{\Omega_{S}} \sigma\left(\mathbf{W}_{h}\right): \varepsilon\left(\mathbf{Z}_{h}\right) \mathrm{d} x, \quad \tilde{\mathbf{Z}}_{h}^{t} M_{S} \tilde{\mathbf{W}}_{h}=\int_{\Omega_{S}} \rho_{s} \mathbf{W}_{h} \cdot \mathbf{Z}_{h} \mathrm{~d} x \\
\tilde{\mathbf{Y}}_{h}^{t} K_{F} \tilde{\mathbf{U}}_{h}=\int_{\Omega_{F}} \rho_{F} c^{2} \operatorname{div} \mathbf{U}_{h} \operatorname{div} \mathbf{Y}_{h} \mathrm{~d} x \quad \tilde{\mathbf{Y}}_{h}^{t} M_{F} \tilde{\mathbf{U}}_{h}=\int_{\Omega_{F}} \rho_{F} \mathbf{U}_{h} \cdot \mathbf{Y}_{h} \mathrm{~d} x, \\
\tilde{\mathbf{Z}}_{h}^{t} C \tilde{\mathbf{P}}_{h}=\int_{\Gamma_{I}} P_{h} \mathbf{Z}_{h} \cdot \boldsymbol{v} \mathrm{~d} \Gamma, \quad \tilde{\mathbf{Y}}_{h}^{t} D \tilde{\mathbf{P}}_{h}=\int_{\Gamma_{I}} P_{h} \mathbf{Y}_{h} \cdot \boldsymbol{v} \mathrm{~d} \Gamma
\end{gathered}
$$

$K_{S}$ and $M_{S}$ are the standard stiffness and mass matrices of the solid, respectively; $K_{F}$ and $M_{F}$ are the corresponding ones for the fluid. Notice that the order of the two latter is $N_{F} \times N_{F}$, with $N_{F}$ being the total number of faces of the fluid mesh; moreover they are highly sparse because only a maximum of seven entries per row can be different from zero (this corresponds to the number of faces of two adjacent tetrahdedra).

On the other hand, $C$ and $D$ are the coupling matrices of the interface pressure with the solid and the fluid, respectively. Both are very sparse too. Indeed $D$ is an $N_{F} \times N_{I}$ rectangular matrix, with $N_{I}$ being the number of faces on the fluid-solid interface. Each column of $D$ has exactly only one non-zero entry. To describe more precisely the structure of this matrix assume for simplicity that the degrees of fredom in the fluid are numbered in such a way that the first $N_{I}$ ones correspond to the faces on the interface. Then

$$
D=\left[\begin{array}{lll}
d_{1} & & \\
& \ddots & \\
& & d_{N_{I}} \\
& &
\end{array}\right]
$$

with $d_{i}$ being the area of the $i$ th face.
Similarly, $C$ is an $N_{S} \times N_{I}$ rectangular matrix, with $N_{S}$ being the number of degrees of freedom of the solid mesh. Each column of $C$ has at most nine non-zero entries because this is the number of degrees of freedom at each face of the solid.

Problem $(13,14)$ is written in terms of these matrices in the following way:

$$
\left(\begin{array}{ccc}
K_{S} & 0 & C \\
0 & K_{F} & D \\
C^{t} & D^{t} & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{\mathbf{w}}_{h} \\
\tilde{\mathbf{U}}_{h} \\
\widetilde{\mathbf{P}}_{h}
\end{array}\right)=\omega_{h}^{2}\left(\begin{array}{ccc}
M_{S} & 0 & 0 \\
0 & M_{F} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{\mathbf{W}}_{h} \\
\tilde{\mathbf{U}}_{h} \\
\tilde{\mathbf{P}}_{h}
\end{array}\right) .
$$

Both matrices in this eigenvalue problem are singular; however, by performing a translation in the eigenvalues, it can be written in an equivalent more convenient way:

$$
\left(\begin{array}{ccc}
K_{S}+M_{S} & 0 & C  \tag{16}\\
0 & K_{F}+M_{F} & D \\
C^{t} & D^{t} & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{\mathbf{W}}_{h} \\
\widetilde{\mathbf{U}}_{h} \\
\widetilde{\mathbf{P}}_{h}
\end{array}\right)=\left(1+\omega_{h}^{2}\right)\left(\begin{array}{ccc}
M_{S} & 0 & 0 \\
0 & M_{F} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{\mathbf{W}}_{h} \\
\widetilde{\mathbf{U}}_{h} \\
\widetilde{\mathbf{P}}_{h}
\end{array}\right) .
$$

As we show below, the matrix on the left hand side is now non-singular and, consequently, it yields a well posed generalized eigenvalue problem. Furthermore, both matrices of this problem are symmetric and highly sparse and, hence, convenient for computational purposes

To prove the non-singularity of the matrix on the left hand side of equation (16), assume that

$$
\left(\begin{array}{ccc}
K_{S}+M_{S} & 0 & C \\
0 & K_{F}+M_{F} & D \\
C^{t} & D^{t} & 0
\end{array}\right)\left(\begin{array}{c}
\tilde{\mathbf{W}}_{h} \\
\tilde{\mathbf{U}}_{h} \\
\widetilde{\mathbf{P}}_{h}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Matrices $K_{S}+M_{S}$ and $K_{F}+M_{F}$ are clearly positive definite and hence non-singular. Then

$$
\begin{align*}
& \left(K_{S}+M_{S}\right) \tilde{\mathbf{W}}_{h}+C \tilde{\mathbf{P}}_{h}=0 \Rightarrow \tilde{\mathbf{W}}_{h}=-\left(K_{S}+M_{S}\right)^{-1} C \tilde{\mathbf{P}}_{h},  \tag{17}\\
& \left(K_{F}+M_{F}\right) \tilde{\mathbf{U}}_{h}+D \tilde{\mathbf{P}}_{h}=0 \Rightarrow \tilde{\mathbf{U}}_{h}=-\left(K_{F}+M_{F}\right)^{-1} D \tilde{\mathbf{P}}_{h}, \tag{18}
\end{align*}
$$

and

$$
C^{\prime} \tilde{\mathbf{W}}_{h}+D^{\prime} \tilde{\mathbf{U}}_{h}=0 \Rightarrow-\left[C^{\prime}\left(K_{S}+M_{S}\right)^{-1} C+D^{\prime}\left(K_{F}+M_{F}\right)^{-1} D\right] \tilde{\mathbf{P}}_{h}=0 .
$$

Since $K_{S}+M_{S}$ and $K_{F}+M_{F}$ are positive definite, one has

$$
\begin{aligned}
0= & \tilde{\mathbf{P}}_{h}^{\prime}\left[C^{\prime}\left(K_{S}+M_{S}\right)^{-1} C+D^{\prime}\left(K_{F}+M_{F}\right)^{-1} D\right] \tilde{\mathbf{P}}_{h} \\
= & \left(C \tilde{\mathbf{P}}_{h}\right)^{\prime}\left(K_{S}+M_{S}\right)^{-1}\left(C \tilde{\mathbf{P}}_{h}\right)+\left(D \tilde{\mathbf{P}}_{h}\right)^{\prime}\left(K_{F}+M_{F}\right)^{-1}\left(D \tilde{\mathbf{P}}_{h}\right) \\
& \geqslant \alpha\left\|C \tilde{\mathbf{P}}_{h}\right\|^{2}+\beta\left\|D \widetilde{\mathbf{P}}_{h}\right\|^{2} .
\end{aligned}
$$

Hence $C \tilde{\mathbf{P}}_{h}=0$ and $D \tilde{\mathbf{P}}_{h}=0$, and so, by using equations (17) and (18), one obtains $\widetilde{\mathbf{W}}_{h}=0$ and $\tilde{\mathbf{U}}_{h}=0$.

Finally, to see that $\tilde{\mathbf{P}}_{h}=0$, let $P_{h}$ be the constant per face function defined on $\Gamma_{I}$ having as nodal values the components of the vector $\widetilde{\mathbf{P}}_{h}$. Let us take a function $Y_{h}$ in the Raviart-Thomas finite element space such that $\mathbf{Y}_{h} \cdot \boldsymbol{v}=P_{h}$. One has

$$
\begin{equation*}
0=\tilde{\mathbf{Y}}_{h}^{t} D \tilde{\mathbf{P}}_{h}=\int_{\Gamma_{t}} P_{h} \mathbf{Y}_{h} \cdot \mathbf{v} \mathrm{~d} \Gamma=\int_{\Gamma_{l}} P_{h}^{2} \mathrm{~d} \Gamma, \tag{19}
\end{equation*}
$$

and then $\widetilde{\mathbf{P}}_{h}=0$. Hence, the matrix on the left hand side of equation (16) is non-singular as claimed.

## 5. NUMERICAL RESULTS

In this section, numerical results obtained by a fortran implementation of the finite element method described above are presented. This 3D code has been previously validated by computing in plane vibration modes [18] and comparing the results with those obtained with the analogous 2D code of reference [11].

For our numerical experiments three different geometries have been considered: a thick cubic closed vessel (inner edges length 1.00 m , thickness 0.25 m ) clamped


Figure 3. Thick cubic vessel.


Figure 4. Thin cylinder.
by its bottom and completely filled by the fluid; a thin cylinder (height 3.5 m , inner diameter length 2.0 m , thickness 0.1 m ) clamped by both ends and also full of fluid; a cubic cavity (inner edges length 1.00 m ) completely filled by the fluid, with all of its walls perfectly rigid except for that on its top which is a clamped plate (thickness 0.05 m ). Vertical and horizontal sections are shown in Figure 3 for the cubic vessel, in Figure 4 for the cylinder and in Figure 5 for the rigid cavity covered by a plate. To take advantage of the symmetry, we have considered a quarter of the geometry in the first and third cases and an eighth in the second one, as shown in each figure by the dashed lines.

In all cases steel has been used as the solid with the following physical parameters: density $\rho_{s}=7700 \mathrm{~kg} / \mathrm{m}^{3}$, Young's modulus $E=1.44 \times 10^{11} \mathrm{~Pa}$, Poisson's coefficient $v_{s}=0 \cdot 35$, whereas for the fluid we have considered water of density $\rho_{F}=1000 \mathrm{~kg} / \mathrm{m}^{3}$, and sound speed $c=1430 \mathrm{~m} / \mathrm{s}$.


Figure 5. Rigid cavity covered by a plate.

Table 1
Water in a rigid cubic cavity

| Mode | Mesh 1 | Mesh 2 | Mesh 3 | Extrapolated | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\omega_{001}^{F}$ | $4482 \cdot 565$ | $4488 \cdot 129$ | $4490 \cdot 046$ | $4492 \cdot 441$ | $4492 \cdot 447$ |
| $\omega_{10}^{F}$ | $4482 \cdot 652$ | $4488 \cdot 161$ | $4490 \cdot 061$ | $4492 \cdot 439$ | $4492 \cdot 477$ |
| $\omega_{010}^{F}$ | $4483 \cdot 877$ | $4488 \cdot 842$ | $4490 \cdot 484$ | $4492 \cdot 395$ | $4492 \cdot 477$ |
| $\omega_{10}^{F}$ | $6356 \cdot 154$ | $6354 \cdot 522$ | $6353 \cdot 999$ | $6353 \cdot 423$ | $6353 \cdot 323$ |
| $\omega_{11}^{F}$ | $6358 \cdot 052$ | $6355 \cdot 361$ | $6354 \cdot 462$ | $6353 \cdot 400$ | $6353 \cdot 323$ |
| $\omega_{011}^{F}$ | $6358 \cdot 800$ | $6355 \cdot 627$ | $6354 \cdot 578$ | $6353 \cdot 412$ | $6353 \cdot 323$ |
| $\omega_{111}^{F}$ | $7803 \cdot 508$ | $7790 \cdot 985$ | $7786 \cdot 666$ | $7781 \cdot 260$ | $7781 \cdot 199$ |

Each example has been solved by using differently refined meshes in order to study the convergence behavior of the method. These meshes have been obtained by creating successively refined uniform triangulations of the boundaries and using a general 3D finite element package to generate the tetrahedral meshes in the interior of the domains. For a given mesh, d.o.f. denotes the total number of degrees of freedom (i.e., the sum of those of the solid, the fluid and the interface).

For the first example, three different tetrahedral meshes have been used to discretize a quarter of the thick cubic vessel and the fluid inside: Mesh 1 d.o.f. $=3463$ ( 1575 in the solid, 1696 in the fluid and 192 on the interface); Mesh 2 d.o.f. $=10498$ ( 4512 in the solid, 5544 in the fluid and 432 on the interface); Mesh 3, d.o.f. $=23491$ (9795 in the solid, 12928 in the fluid and 768 on the interface).

First, the vibration modes corresponding to the lowest eigenfrequencies of each uncoupled problem have been computed: namely, either the fluid contained in a perfectly rigid solid or the solid without any fluid inside. $\omega_{i}^{F}$ denotes the eigenfrequencies of the fluid in a rigid cavity and $\omega_{i}^{S}$ those of the solid in vacuo. Each vibration mode of the coupled problem is a perturbation of one of these; thus, the corresponding eigenfrequencies are denoted either by $\omega_{i}^{E}$ or $\omega_{i}^{S}$, according to which they are a perturbation of, and are called, "fluid" or "solid" eigenmodes, respectively.

For the fluid in a rigid cavity, the computed vibration frequencies are compared with the exact ones which, in this case, are analytically known; in fact, for a cubic cavity with inner edges of length $L$, the free vibration angular frequencies are

$$
\omega_{l m n}^{F}=(c \pi / L) \sqrt{l^{2}+m^{2}+n^{2}}, \quad l, m, n=0,1,2, \ldots, \quad l+m+n \neq 0,
$$

with corresponding pressure amplitudes

$$
P\left(x_{1}, x_{2}, x_{3}\right)=\cos \left(l \pi x_{1} / L\right) \cos \left(m \pi x_{2} / L\right) \cos \left(n \pi x_{3} / L\right), \quad 0<x_{1}, x_{2}, x_{3}<L .
$$

Table 1 shows the values of the lowest eigenfrequencies (in rad/s) computed with each mesh and the more accurate approximation that is obtained by extrapolating them. The table also includes the corresponding exact vibration frequencies.

Notice that the values obtained by extrapolating the results on these three meshes agree with the exact ones almost with five significant digits.

Table 2
"Fluid" elastoacoustic and uncoupled (rigid cavity) modes for a cubic vessel

|  |  | Steel vessel |  | Rigid cavity |
| :---: | :---: | :---: | :---: | :---: |
| Mode | Mesh 1 | Mesh 2 | Mesh 3 | Mesh 3 |
| $\omega_{01}^{F}$ | $4619 \cdot 454$ | $4571 \cdot 933$ | $4579 \cdot 967$ | $4490 \cdot 046$ |
| $\omega_{100}^{F}$ | $4238 \cdot 184$ | $4193 \cdot 331$ | $4163 \cdot 331$ | $4163 \cdot 296$ |
| $\omega_{010}^{F}$ | $4231 \cdot 182$ | $4186 \cdot 356$ | $4158 \cdot 101$ | $4490 \cdot 484$ |
| $\omega_{10}^{F}$ | $5906 \cdot 880$ | $5717 \cdot 052$ | $5603 \cdot 941$ | $6353 \cdot 999$ |
| $\omega_{10}^{F}$ | $6150 \cdot 860$ | $6036 \cdot 036$ | $5984 \cdot 662$ | $6354 \cdot 462$ |
| $\omega_{01}^{F}$ | $5896 \cdot 335$ | $5716 \cdot 762$ | $5603 \cdot 425$ | $6354 \cdot 578$ |
| $\omega_{111}^{F}$ | $7558 \cdot 874$ | $7487 \cdot 871$ | $7748 \cdot 380$ | $7786 \cdot 666$ |

On the other hand, because of the symmetry of the geometry, the two lowest exact vibration frequencies has multiplicity 3 . However, since the meshes have been created by a general 3D generator, they do not preserve this symmetry and hence the corresponding computed frequencies differ slightly.

Note also that the first three frequencies converge from below, while the next three converge from above. This is something typical of displacement formulations (see, for instance, Table 1 in reference [13]); it is due to the fact that the lowest eigenvalue of the mathematical problem is zero with infinite multiplicity and, because of this, the min-max principles yielding convergence from above in other vibration problems do not apply in this case.

Table 2 shows the computed lowest eigenfrequencies of the "fluid" modes for the coupled problem: water contained in the steel cavity. The corresponding uncoupled eigenfrequencies (i.e., within a perfectly rigid cavity) computed on the finest mesh are also included to appreciate the effect of the elastic response of the solid walls.

Note that the computed values of the first eigenfrequency in Table 2 do not behave monotonically as with all the other modes. This is due to a resonance effect with the "solid" eigenmode $\omega_{6}^{S}$ in Table 3. In fact, both vibration modes have the

Table 3
"Solid" coupled and uncoupled (in vacuo) modes for a cubic steel vessel

| Mode | Filled with water |  |  | In vacuo <br> Mesh 3 |
| :---: | :---: | :---: | :---: | :---: |
|  | Mesh 1 | Mesh 2 | Mesh 3 |  |
| $\omega_{1}^{S}$ | $1624 \cdot 671$ | 1581.248 | 1563.084 | 1595.985 |
| $\omega_{2}^{S}$ | $2598 \cdot 815$ | $2531 \cdot 345$ | 2503.574 | $2507 \cdot 669$ |
| $\omega_{3}^{S}$ | 3631.327 | $3532 \cdot 999$ | $3477 \cdot 217$ | $3717 \cdot 577$ |
| $\omega_{4}^{S}$ | $5036 \cdot 372$ | 4969.426 | $4937 \cdot 061$ | $4626 \cdot 765$ |
| $\omega_{5}^{s}$ | 4728.898 | $4565 \cdot 646$ | $4483 \cdot 854$ | $4677 \cdot 719$ |
| $\omega_{6}^{S}$ | $4896 \cdot 822$ | 4595-293 | 4414-306 | 4786•102 |



Figure 6. Cube, mode $\omega_{1}^{S}$; deformed structure.
same symmetry and very close frequencies. This is particularly true for the values computed on Mesh 2 and hence, because of the typical "veering" phenomenon (see reference [1]), these values tend to separate from each other.
Table 3 shows analogous results to those of Table 2 for the "solid" vibration modes. Note that, for the solid in vacuo, the method reduces to the classical computation with four-node linear tetrahedral elements.

The good convergence observed in these tables shows that the lowest elastoacoustic vibration modes can be reliably computed with this method.


Figure 7. Cube, mode $\omega_{1}^{S}$; pressure in the fluid.


Figure 8. Cube, mode $\omega_{2}^{S}$; deformed structure.

This example is concluded by showing in Figures 6-11 the deformed structure and the fluid pressure field for three vibration modes of the coupled problem.

For the second example, the previous steps have been repeated with the thin cylinder. Note that this case is not covered by the theory in reference [18] since the solid is not polyhedral. However, the numerical results below show that the performance of the method is as good as for polyhedral geometries.


Figure 9. Cube, mode $\omega_{2}^{s}$; pressure in fluid.


Figure 10. Cube, mode $\omega_{001}^{F}$; deformed structure.

Again three increasingly refined meshes have been used for the eighth of the cylinder and the fluid inside: Mesh 1, d.o.f. $=1068$ ( 240 in the solid, 772 in the fluid and 56 on the interface); Mesh 2, d.o.f. $=7215$ (1215 in the solid, 5776 in the fluid and 224 on the interface); Mesh 3, d.o.f. $=22980$ (3432 in the solid, 19044 in the fluid and 504 on the interface).
The exact eigenmodes for the uncoupled problem of a fluid contained in a cylindrical rigid cavity can be also analytically computed; the free vibration angular frequencies are given in this case by

$$
\omega_{h m m}^{F}=\left\{\begin{array}{rcl}
\frac{c \pi l}{H}, & n=m=0, & l=1,2,3, \ldots \\
c \sqrt{\frac{\pi^{2} l^{2}}{H^{2}}+\frac{\zeta_{n m}^{2}}{R^{2}}}, & l, n=0,1,2, \ldots, & m=1,2, \ldots
\end{array}\right.
$$

where $R$ and $H$ are the radius and the height of the cylinder (in our case $R=1 \mathrm{~m}$ and $H=3.5 \mathrm{~m}$ ) and $\zeta_{n m}$ is the $m$ th positive root of the derivative of the first kind Bessel function $\mathrm{J}_{n}(\zeta)$.

Table 4 shows that the convergence for the vibration modes of the fluid is excellent.

Table 5 shows the computed frequencies of the "fluid" modes for water contained in the thin steel cylinder. Once more the convergence is very good. As in Table 2, the corresponding uncoupled modes computed with the finest mesh are also included for comparison.
The eigenfrequencies of three vibration "solid" modes of the cylinder filled with water and in vacuo have also been computed.


Figure 11. Cube, mode $\omega_{001}^{F}$; pressure in the fluid.
The poor performance observed in Table 6, namely the large variations between the eigenfrequencies computed with each mesh (in particular for $\omega_{1}^{S}$ and $\omega_{3}^{S}$ ), is a defect neither of the elements used for the fluid nor of the methodology proposed to impose the kinematic constraints. In fact, for the uncoupled problem of the cylinder in vacuo these variation are equally large and, in this case our method

## Table 4

Water in a rigid cylindrical cavity

| Mode | Mesh 1 | Mesh 2 | Mesh 3 | Extrapolated | Exact |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\omega_{100}^{F}$ | $1282 \cdot 048$ | $1283 \cdot 184$ | $1283 \cdot 396$ | $1283 \cdot 567$ | $1283 \cdot 565$ |
| $\omega_{200}^{F}$ | $2554 \cdot 990$ | $2564 \cdot 085$ | $2565 \cdot 777$ | $2567 \cdot 139$ | $2567 \cdot 130$ |
| $\omega_{011}^{F}$ | $2670 \cdot 045$ | $2642 \cdot 217$ | $2637 \cdot 051$ | $2632 \cdot 906$ | $2632 \cdot 916$ |
| $\omega_{111}^{F}$ | $2964 \cdot 963$ | $2937 \cdot 717$ | $2932 \cdot 893$ | $2929 \cdot 238$ | $2929 \cdot 127$ |

Table 5
"Fluid" elastoacoustic and uncoupled (rigid cavity) modes for a cylindrical vessel

| Mode | Steel vessel |  |  | Rigid cavity Mesh 3 |
| :---: | :---: | :---: | :---: | :---: |
|  | Mesh 1 | Mesh 2 | Mesh 3 |  |
| $\omega_{100}^{F}$ | 1188.443 | $1166 \cdot 649$ | 1158.687 | 1283.396 |
| $\omega_{200}^{F}$ | $2348 \cdot 552$ | 2281.999 | $2255 \cdot 354$ | $2565 \cdot 777$ |
| $\omega_{011}^{F}$ | $2948 \cdot 532$ | $2775 \cdot 609$ | $2695 \cdot 288$ | $2637 \cdot 051$ |
| $\omega_{111}^{F}$ | $2338 \cdot 165$ | $2142 \cdot 013$ | $2085 \cdot 688$ | $2932 \cdot 893$ |

Table 6
"Solid" coupled and uncoupled (in vacuo) modes for a cylindrical steel vessel

| Mode | Filled with water |  |  | In vacuo |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mesh 1 | Mesh 2 | Mesh 3 | Mesh 1 | Mesh 2 | Mesh 3 |
| $\omega_{1}^{S}$ | $1701 \cdot 500$ | 1153.671 | 1009•377 | 2089.007 | $1409 \cdot 556$ | 1232.094 |
| $\omega_{2}^{S}$ | 1311.843 | $1237 \cdot 666$ | $1219 \cdot 264$ | 1745.492 | 1648.411 | $1624 \cdot 648$ |
| $\omega_{3}^{S}$ | $4003 \cdot 714$ | $2291 \cdot 144$ | $1707 \cdot 784$ | 4833.060 | $2697 \cdot 915$ | 2001.229 |

Table 5 shows the computed frequencies of the "fluid" modes for water contained in the thin steel cylinder. Once more the convergence is very good. As in Table 2, the corresponding uncoupled modes computed with the finest mesh are also included for comparison.

The eigenfrequencies of three vibration "solid" modes of the cylinder filled with water and in vacuo have also been computed.

The poor performance observed in Table 6, namely the large variations between the eigenfrequencies computed with each mesh (in particular for $\omega_{1}^{S}$ and $\omega_{3}^{S}$ ), is a defect neither of the elements used for the fluid nor of the methodology proposed to impose the kinematic constraints. In fact, for the uncoupled problem of the cylinder in vacuo these variation are equally large and, in this case our method reduces to compute the vibration modes of the structure by classical four-node tetrahedral elements. These results clearly show the need for combining Raviart-Thomas elements for the fluid with adequate 2D models of thin structures as is done below in the case of a plate.


Figure 12. Eighth of the cylinder, mode $\omega_{1}^{S}$; deformed structure.


Figure 13. Eighth of the cylinder, mode $\omega_{1}^{S}$; pressure in the fluid.

This example is concluded by showing in Figures 12-17 one-eighth of the deformed cylinder and the fluid pressure field for three modes of this coupled problem.

The third problem considered consists of computing the vibration modes of a plate in contact with a fluid. The Reissner-Mindlin model was used for the bending of the plate, discretized by MITC3, a locking free finite element method introduced by Bathe and Dvorkin [19]. In this method, the transversal displacements of the


Figure 14. Eighth of the cylinder, mode $\omega_{2}^{S}$; deformed structure.


Figure 15. Eighth of the cylinder, mode $\omega_{2}^{S}$; pressure in the fluid.
plate are discretized by piecewise linear functions which have been coupled with Raviart-Thomas elements for the fluid displacements, as in the examples above. A thorough theoretical analysis of this problem can be found in reference [20], where it is proved that the coupled method does not lock as the plate thickness becomes small and hence that it can be reliably used no matter how thin the plate is.


Figure 16. Eighth of the cylinder, mode $\omega_{100}^{F}$; deformed structure.


Figure 17. Eighth of the cylinder, mode $\omega_{100}^{F}$; pressure in the fluid.

Once more, three differently refined meshes have been used: Mesh 1, d.o.f. $=1859$ ( 131 in the plate, 1696 in the fluid and 32 on the interface); Mesh 2, d.o.f. $=5883$ ( 267 in the plate, 5544 in the fluid and 72 on the interface); Mesh 3, d.o.f. $=13507$ ( 451 in the plate, 12928 in the fluid and 128 on the interface).

Table 7
Elastoacoustic and uncoupled modes for a plate-fluid system

| Mode | Plate-fluid coupled modes |  |  | Uncoupled modes Mesh 3 |
| :---: | :---: | :---: | :---: | :---: |
|  | Mesh 1 | Mesh 2 | Mesh 3 |  |
| $\omega_{1}^{S}$ | $2177 \cdot 939$ | $2170 \cdot 651$ | $2167 \cdot 922$ | 2327-212 |
| $\omega_{001}^{F}$ | $4890 \cdot 610$ | $4854 \cdot 706$ | 4841.131 | $4490 \cdot 046$ |
| $\omega_{100}^{F}$ | $4885 \cdot 135$ | 4857.721 | $4847 \cdot 314$ | $4490 \cdot 061$ |
| $\omega_{010}^{F}$ | 4884.680 | 4857.568 | $4847 \cdot 249$ | $4490 \cdot 484$ |
| $\omega_{2}^{S}$ | $3545 \cdot 822$ | $3525 \cdot 596$ | $3518 \cdot 040$ | $4689 \cdot 178$ |
| $\omega_{3}^{S}$ | 3547-250 | $3526 \cdot 172$ | $3518 \cdot 343$ | $4689 \cdot 178$ |
| $\omega_{101}^{F}$ | 6758.293 | $6694 \cdot 080$ | $6669 \cdot 856$ | 6353.999 |
| $\omega_{110}^{F}$ | 6726.668 | $6675 \cdot 258$ | $6656 \cdot 259$ | $6354 \cdot 462$ |
| $\omega_{011}^{F}$ | $6758 \cdot 265$ | 6694.111 | $6669 \cdot 870$ | $6354 \cdot 578$ |
| $\omega_{4}^{S}$ | $5529 \cdot 026$ | $5449 \cdot 373$ | $5418 \cdot 194$ | $6826 \cdot 651$ |
| $\omega_{111}^{F}$ | 8273.536 | $8175 \cdot 172$ | 8138.963 | $7786 \cdot 666$ |
| $\omega_{5}^{S}$ | $6943 \cdot 492$ | $6866 \cdot 441$ | $6831 \cdot 714$ | 8197.654 |
| $\omega_{6}^{S}$ | 7741.467 | $7465 \cdot 741$ | $7355 \cdot 582$ | $8374 \cdot 716$ |



Figure 18. Fluid-plate, mode $\omega_{1}^{S}$; deformed structure.

Table 7 shows the computed lowest frequencies of the coupled system. Also included are the frequencies of the corresponding uncoupled modes for comparison. The table shows the excellent performance of the method.

Finally, Figures 18-23 show the deformed plate and the pressure field for some vibration modes in the previous table.


Figure 19. Fluid-plate, mode $\omega_{1}^{S}$; pressure in the fluid.


Figure 20. Fluid-plate, mode $\omega_{2}^{S}$; deformed structure.

## 6. CONCLUSIONS

In this paper a finite element method has been proposed to solve 3D elastoacoustic spectral problems. It involves a formulation where the fluid as well as the solid are described by their displacement fields. The main advantage with respect to standard finite element methods is that it yields symmetric sparse eigenvalue problems without introducing numerical spurious eigenmodes.


Figure 21. Fluid-plate, mode $\omega_{2}^{S}$; pressure in the fluid.


Figure 22. Fluid-plate, mode $\omega_{100}^{F}$; deformed structure.

Moreover the coupling conditions on the fluid-solid interface are very easily imposed by using the interface pressure as a Lagrange multiplier, allowing eventually the use of non-compatible fluid and solid meshes.

For a given mesh, the present method is more expensive in terms of degrees of freedom if compared to other symmetric methods based on pressure/potential formulations for the fluid or to unsymmetric methods based on pressure


Figure 23. Fluid-plate, mode $\omega_{100}^{F}$; pressure in the fluid.
formulations. However, the matrices obtained with Raviart-Thomas elements are much more sparse than those of these other methods: they have at most seven non null entries per row versus around 20 for four-node tetrahedral elements. Therefore, the overall computational cost could be significantly reduced if iterative methods based on matrix vector multiplications are used to solve the eigenproblems.

## ACKNOWLEDGMENTS

This work was partially supported by FONDECYT (Chile) through its grant no. 1.960.615, Instituto de Cooperación Iberoamericana (ICI, Spain) and Proyecto de Colaboración Hispano Francesa through grant nos. HF1996-0172 and HF1997-0194.

## REFERENCES

1. H. J.-P. Morand and R. Ohayon 1992 Interactions Fluides-Structure. Paris: Masson.
2. C. Conca, J. Planchard and M. Vanninathan 1992 Fluids and Periodic Structures. Paris: Masson.
3. O. C. Zienkiewicz and R. L. Taylor 1991 The Finite Element Method, Volume 2. London: McGraw-Hill.
4. M. Petyt, J. Lea and G. H. Koopmann 1976 Journal of Sound and Vibration 45, 495-502. A finite element method for determining the acoustic modes of irregular shaped cavities.
5. G. C. Everstine 1981 Journal of Sound and Vibration 79, 157-160. A symmetric potential formulation for fluid-structure interaction.
6. H. Morand and R. Ohayon 1979 International Journal for Numerical Methods in Engineering 14, 741-755. Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results.
7. K. J. Bathe, C. Nitikitpaiboon and X. Wang 1995 Computers and Structures 56, 225-237. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction.
8. X. Wang and K. J. Bathe 1997 International Journal for Numerical Methods in Engineering 40, 2001-2017. Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems.
9. L. Kiefling and G. C. Feng 1976 American Institute of Aeronautics and Astronautics Journal 14, 199-203. Fluid-structure finite element vibration analysis.
10. M. Hamdi, Y. Ousset and G. Verchery 1978 International Journal for Numerical Methods in Engineering 13, 139-150. A displacement method for the analysis of vibrations of coupled fluid-structure systems.
11. A. Bermúdez and R. Rodríguez 1994 Computer Methods in Applied Mechanics and Engineering 119, 355-370. Finite element computation of the vibration modes of a fluid-solid system.
12. L. G. Olson and K. J. Bathe 1983 Nuclear Engineering and Design 76, 137-151. A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems.
13. H. C. Chen and R. L. Taylor 1990 International Journal for Numerical Methods in Engineering 29, 683-698. Vibration analysis of fluid-solid systems using a finite element displacement formulation.
14. A. Bermúdez, R. Durán, M. A. Muschietti, R. Rodríguez and J. Solomin 1995 Society for Industrial and Applied Mathematics Journal on Numerical Analysis 32, 1280-1295. Finite element vibration analysis of fluid-solid systems without spurious modes.
15. P. A. Raviart and J. M. Thomas 1972 in Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics Volume 606, Berlin: Springer-Verlag, 292-315. A mixed finite element method for second order elliptic problems.
16. L. D. Landau and E. M. Lifshitz 1959 Theory of Elasticity. Oxford: Pergamon Press.
17. F. Brezzi and M. Fortin 1991 Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag.
18. A. Bermúdez, L. Hervella-Nieto and R. Rodríguez 1996 in Numerical Methods in Engineering '96. New York: J. Wiley \& Sons, 874-880. Numerical solution of three-dimensional elastoacoustic problems.
19. K. J. Bathe and E. N. Dvorkin 1985 International Journal for Numerical Methods in Engineering 21, 367-383. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation.
20. R. Durán, L. Hervella-Nieto, E. Liberman, R. Rodríguez and J. Solomin 1998 Finite element analysis of the vibration problem of a plate coupled with a fluid (submitted).
