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In this paper, the interior elastoacoustic problem in a 3D domain is solved.
Displacement variables are used for both the fluid and the solid. To avoid the
typical spurious modes of this formulation, a non-standard discretization is used,
consisting of classical linear tetrahedral finite element for the solid and
Raviart–Thomas elements of lowest order for the fluid. A new unknown is
introduced on the interface between solid and fluid to impose the transmission
conditions.
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1. INTRODUCTION

The computation of the motion of an elastic solid interacting with a fluid is an
important problem which occurs in many engineering applications. During the last
few years, a large amount of work has been devoted to this subject. A general
overview can be found in the monogaphs by Morand and Ohayon [1] and Conca
et al. [2], where numerical methods and further references are also given.

This paper deals with a particular fluid–solid interaction: the elastoacoustic
problem. It is concerned with the determination of the small amplitude vibration
modes of an elastic structure containing an ideal compressible fluid (see Figure 1).
In this case, the displacements are small enough to produce a linear response of
the structure. An homogeneous fluid is considered and the effects of gravity are
neglected. Also other usual simplifications in this kind of problem are adopted,
namely, that the fluid velocities are small enough so that the convective effects can
be neglected, and that the viscous effects in the fluid are not relevant (see, for
instance, the book by Zienkiewicz and Taylor [3]).

The problem of determining the vibration of a fluid alone is usually treated
by choosing the pressure as the primary variable [4]. However, for coupled
systems, such a choice leads to non-symmetric eigenvalue problems [3] whose
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computational solution involves considerable complications. Because of this, the
fluid part has been alternatively described by different variables: for instance,
Everstine [5] has used the velocity potential, obtaining a quadratic eigenvalue
problem; Morand and Ohayon [6] have used both the pressure and the
displacement potential, obtaining a symmetric problem.

Several authors have used primitive variable formulations (i.e., displacements
in both fluid and solid), for example, in frequency calculations and response
spectrum analysis, because they do not require any special interface conditions or
new solution strategies. This approach could be applied to the solution of a broad
range of problems (in particular non-linear ones) [7, 8] and leads to sparse
symmetric matrices. However a serious drawback of this formulation was pointed
out several years ago by Kiefling and Feng [9]: they showed that it suffers from
the presence of spurious circulation modes, with no physical entity, when the
displacement in the fluid is discretized by standard finite elements.

Since then several approaches have been proposed to avoid this drawback.
Hamdi et al. [10] introduced an irrotational constraint by means of a penalty
method. This technique does not attain the complete elimination of spurious
modes, but they are pushed towards higher frequencies and therefore do not
appear among the first modes. This fact was theoretically justified by Bermúdez
and Rodrı́guez [11]. However, Olson and Bathe [12] demonstrated that the method
‘‘locks up’’ in the frequency analysis of a solid vibrating in a fluid cavity. They
also showed that reduced integration performed on the penalty formulation yields
some improvement in results but does not ensure solution convergence in a general
case.

On the other hand, Chen and Taylor [13] proposed a four-node element with
reduced integration in the stiffness matrix of the fluid combined with a projection

Figure 1. Fluid and solid domains in 2D.
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on the element mass matrix. Numerical experiments show that this method is
useful to eliminate spurious modes but, up to now, no theoretical analysis has been
performed.

More recently, Bermúdez et al. [11, 14] introduced an alternative approach. It
consists of using different finite element spaces for the solid and the fluid. For
two-dimensional problems, standard three-node triangles are used for the solid,
whereas so-called ‘‘edge elements’’ are chosen for the fluid displacements. These
‘‘edge elements’’, introduced by Raviart and Thomas [15], are incomplete linear
polynomials; their degrees of freedom are located at the edges of the triangles and
represent the constant normal components of the displacement field along them.
Non-existence of spurious modes has been mathematically proved in reference
[14], whereas numerical tests showing the good performance of the method are
provided in reference [11].

In both the above mentioned papers, the method is applied to two-dimensional
problems, which implies an important limitation for practical applications. On the
other hand, as remarked by Wang and Bathe [8] the coupling in this approach
needs special considerations because of the fact that the degrees of freedom of the
fluid elements are not those of the structure.

In this paper, a variant of this method avoiding this drawback is presented and
it is tested with numerical experiments over different three-dimensional examples.
This variant consists of introducing a new variable, the pressure on the fluid–solid
interface, which allows the coupling kinematic condition to be imposed in a
simpler way. Furthermore, this methodology would allow incompatible meshes to
be used on the interface (i.e., meshes on the fluid and the solid domain not
necessarily matching on the common boundary).

The outline of the paper is as follows. In section 2 the spectral problem to be
solved is stated along with a weak symmetric formulation involving the
displacements in both, the fluid and the solid and the interface pressure. In section
3 the finite element method is introduced and the main theoretical results
concerning error estimates and non-existence of spurious eigenmodes are
summarized. In section 4 the problem is written in matrix form and it is shown
that it is a well posed generalized eigenvalue problem. Finally, in section 5,
numerical results for some 3D test examples are given in order to validate the
proposed methodology.

2. STATEMENT OF THE PROBLEM

VF and VS denote the three-dimensional interior and exterior domains, occupied
by the fluid and the solid, respectively. The exterior boundary of VS is the union
of two parts, GD and GN , the structure being fixed on GD . n denotes the normal
exterior vector along GN , GI denote the interface between the solid and the fluid,
and n is its unit normal vector pointing outwards VF . Figure 1 shows
corresponding two-dimensional domains for a better understanding of the
notation.
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If an external force F is applied on GN , the equations describing the motion of
the coupled system can be written in the following way [1]:

s
3

j=1

1sij (w)
1xj

= rs
12wi

1t2 in VS , i=1, 2, 3,

−
1p
1xi

= rF
12ui

1t2 in VF , i=1, 2, 3,

p=−rFc2 div u in VF , u · n=w · n on GI ,

s(w)n=−pn on GI , w=0 on GD , s(w)n=F on GN .

In the above expressions x=(x1, x2, x3) are the co-ordinates of a material point
either in the solid or in the fluid; p(x) is the fluid pressure; w(x)= (w1, w2, w3) and
u(x)= (u1, u2, u3) are the displacement vectors of the solid and the fluid,
respectively; div u=a3

j=11uj /1xj is the divergence of the fluid displacement field;
s(w) is the stress tensor in the structure which (upon assuming a linear isotropic
elastic material) is related to the solid displacements w by Hooke’s law [16]:

sij (w)=
Ens

(1+ ns )(1−2ns )
s
3

k=1

okk (w)dij +
E

1+ ns
oij (w), i, j=1, 2, 3,

where oij (w)= 1
2(1wi /1xj + 1wj /1xi ) is the linear strain tensor, E is the Young

modulus and nS the Poisson ratio of the structure; finally rF and rS are the
respective densities and c is the sound speed in the fluid.

For determining the free vibration modes of the coupled system, no exterior
forces are considered and harmonic pressure and motions are looked for: i.e.,

F(x, t)= 0, x$GN p(x, t)=P(x) eivt, x$VF ,

u(x, t)=U(x) eivt, x$GF , u(x, t)=W(x) eivt, x$VS ,

v being the angular frequency of the mode. By replacing these expressions into
the above equations, the following eigenvalue problem is obtained.

Find an angular frequency v and amplitudes of pressure and displacement fields
P, U and W, not all identically zero, satisfying

− s
3

j=1

1sij (W)
1xj

=v2rsWi in VS , i=1, 2, 3, (1)

1P
1xi

=v2rFUi in VF , i=1, 2, 3, (2)

P=−rFc2 div U in VF , U · n=W · n on GI , (3, 4)

s(W)n=−Pn on GI , W= 0 on GD , s(W)n= 0 on GN . (5–7)
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To give a variational formulation of problem (1–7), equation (1) is integrated
multiplied by a virtual solid displacement Z satisfying the Dirichlet condition (6)
and Green’s formula is used to obtain

gVs

s(W):o(Z) dx+gGI

s(W)n · Z dG=v2 gVS

rsW · Z dx.

Then equation (2) is integrated multiplied by a virtual fluid displacement Y and
Green’s formula and equation (3) are used to obtain

gVF

rFc2 div U div Y dx+gGI

PY · n dG=v2 gVF

rFU · Y dx.

Now, by adding both equations and using equation (5) one has

gVF

rFc2 div U div Y dx+gVS

s(W):o(Z) dx+gGI

P(Y · n−Z · n) dG

=v20gVF

rFU · Y dx+gVS

rsW · Z dx1.
Finally, the kinematic constraint (4) between both displacement fields is imposed
in a weak way by integrating this equation multiplied by any test function Q
defined on GI :

gGI

Q(U · n−W · n) dG=0.

All together one obtains the following spectral hybrid problem.

Find an angular frequency v, displacement fields U:VF:R3 and W:VS:R3 and
interface pressure P :GI:R, with U, W and P not all identically zero, satisfying

gVF

rFc2 div U div Y dx+gVS

s(W):o(Z) dx+gGI

P(Y · n−Z · n) dG

=v20gVF

rFU · Y dx+gVS

rSW · Z dx1, [(Y, Z)$x, (8)

and

gGI

Q(U · n−W · n) dG=0, [Q$P. (9)
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In the first equation,

s(W)::o(Z)= s3
i,j=1

sij (W)oij (Z)

is the standard inner product of second order tensors and

x= {(Y, Z):Y:VF:R3 and Z:VS:R3 with Z= 0 on GD}

is the set of pairs of virtual displacements. In the second one, P is the set of
arbitrary functions Q :GI:R.

Note that equation (9) imposes the kinematic constraint (4) on any solution of
this problem. Denote by V the set of kinematically admissable virtual
displacements (i.e., those satisfying this constraint):

V= {(Y, Z)$x :Y · n=Z · n on GI}.

Then, any solution of the hybrid spectral problem (8, 9) also provides a solution
of the following pure displacement eigenvalue problem.

Find an angular frequency v and a pair of displacements (U, W)$V, with U and
W not both identically zero, satisfying

gVF

rFc2 div U div Y dx+gVS

s(W):o(Z) dx

=v20gVF

rFU · Y dx+gVS

rSW · Z dx1, [(Y, Z)$V, (10)

As it is typical in displacement formulations, v=0 is an eigenfrequency of this
problem (and consequently of problem (8, 9)) with an infinite-dimensional
eigenspace

K= {(U, 0)$x : div U=0 in VF and U · n=0 on GI}.

These eigenmodes consist of pure rotational fluid motions inducing neither
vibrations in the solid nor variations of pressure in the fluid. They are
mathematical solutions of the eigenproblem with no physical entity. They do not
correspond to vibration modes of the coupled system, but they arise because no
irrotational constraint is imposed to the fluid displacements.

The rest of the eigenfrequencies of problem (8, 9) are strictly positive and
correspond to actual vibrations of the coupled fluid–solid system. The whole
spectrum of the problem can be characterized by using the spectral theorem for
compact operators and the fact that the fluid displacements associated with v=0
are orthogonal to any irrotational fluid displacement (i.e., those of the form
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Figure 2. Raviart–Thomas finite element.

U= grad f, for some potential f). In fact, the following result, proved in reference
[18], yields:

The solutions of problem (8, 9) are v=0 and a sequence of strictly positive
eigenfrequencies of finite multiplicity v1, v2, . . . , vn , . . . converging to a. The set
of eigenmodes of v=0 consists of pure rotational motions of the fluid, whereas those
of v1, v2, . . . , vn , . . . are irrotational on the fluid.

3. FINITE ELEMENT DISCRETIZATION

In spite of the fact that problems (8, 9) and (10) are mathematically equivalent,
from the computational point of view it is much simpler to deal with the first one.
We are going to solve this problem by using a finite element discretization.
Consider regular partitions in tetrahedra of VF and VS . Let h denote the mesh size
of both ‘‘triangulations’’.

The simplest method consists of using classical four-node tetrahedral elements
for each component of both displacements (i.e., continuous functions which are
linear on each tetrahedron, their degrees of freedom being the displacements at
the vertices of the mesh). However, this is not a suitable choice since spurious
modes arise when such a discretization is used [9, 10].

As stated above, zero frequency eigenmodes of the continuous problem (8, 9)
fill an infinite dimensional subspace of circulation fluid motions with no physical
entity. Therefore, the finite elements to be used should lead to a discrete problem
having zero as an eigenvalue with a large enough associated eigenspace consisting
of discrete rotational fluid motions. Otherwise, spurious modes with non-zero
frequencies placed among the physical ones would arise polluting the numerical
results. This is what happens, for instance, when standard finite elements are used
for the fluid displacements.
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Instead, the lowest order Raviart–Thomas elements [15] are used for the
displacement field in the fluid Uh (see Figure 2). These elements consist of vector
valued functions which are incomplete linear polynomials of the form

Uh (x)= (a+ dx1, b+ dx2, c+ dx3), a, b, c, d$R,

when restricted to each tetrahedron.
These polynomial functions have constant normal components on any plane of

the space. In fact, consider a general plane of equation ax1 + bx2 + gx3 = d with
coefficients normalized such that a2 + b2 + g2 =1. Then n=(a, b, g) is its unit
normal vector and, for any point (x1, x2, x3) in this plane, we have

Uh (x1, x2, x3) · n= a(a+ dx1)+ b(b+ dx2)+ g(c+ dx3)

=aa+ bb+ gc+(ax1 + bx2 + gx3)d

=aa+ bb+ gc+ dd,

which is a constant independent of the point (x1, x2, x3) of the plane.
In particular these fields have constant normal components on each of the four

faces of the tetrahedron. Moreover, the values of these constants define a unique
polynomial function of this type. To see this, let the equations of the four planes
defining a tetrahedron be given by

aix1 + bix2 + gix3 = di , i=1, . . . , 4, (11)

with a2
i + b2

i + g2
i =1 as above. The problem is to find four numbers a, b, c, d such

that

(a+ dx1)ai +(b+ dx2)bi +(c+ dx3)gi =Vi , (12)

where Vi , i=1, . . . , 4, are arbitrarily prescribed values. By using equation (11),
the linear system (12) becomes

a1a+ b1b+ g1c+ d1d=V1

a2a+ b2b+ g2c+ d2d=V2

a3a+ b3b+ g3c+ d3d=V3
.

a4a+ b4b+ g4c+ d4d=V4

Since all planes have to be ‘‘independent’’ (i.e., any two of them cannot be
parallel), this system has a unique solution.

The global discrete displacement field Uh is allowed to have discontinuous
tangential components on the faces of the tetrahedra of the triangulation but its
(constant) normal components must be continuous through these faces, these
constant values being its degrees of freedom. Because of this, div Uh is globally well
defined on VF .

For each component of the displacements in the solid, standard four-node
tetrahedral elements are used.

Finally, the interface pressure is discretized by means of piecewise constant
functions.
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So, let

xh = {(Yh , Zh ):Yh Raviart–Thomas,

Zh four-node tetrahedral and Zh =GD
= 0},

and let Ph be the space of functions defined on GI which are constant on each face
of the triangulation on the interface. We have the following discrete hybrid
problem.

Find a real number vh , a pair of displacements (Uh , Wh ) $ xh and an interface
pressure Ph $Ph , with Uh , Wh and Ph not all identically zero, satisfying

gVF

rFc2 div Uh div Yh dx+gVS

s(Wh ):o(Zh ) dx+gGI

Ph (Zh · n−Yh · n) dG

=v2
h0gVF

rFUh · Yh dx+gVS

rSWh · Zh dx1, [(Yh , Zh )$xh , (13)

and

gGI

Qh (Wh · n−Uh · n) dG=0, [Qh $Ph . (14)

Equation (14) imposes weakly the kinematic constraint on the discrete
displacements. By using in this equation a test function Qh taking the value 1 on
a particular face F on the interface GI and vanishing on all the other faces, one
has

gF

(Uh · n−Wh · n) dG=0. (15)

From this equation it is deduced that, in general, the normal components Uh · n

and Wh · n do not coincide on the whole GI . Indeed, the Raviart–Thomas finite
elements used for the fluid displacements have constant per face normal
components, whreas those of the four-node elements used in the solid are linear.
Then equation (15) implies that both coincide only at the barycenter M of each
face FWGI . In fact,

[Uh (M) · n] area (F)=gF

Uh · n dG=gF

Wh · n dG=[Wh (M) · n] area (F),

the latter because the barycenter rule is exact for linear functions.
Let us remark that vh =0 is an eigenfrequency of the discrete problem (13, 14)

and the set of its associated eigenmodes is Kh =K+ xh , which provides a good
approximation of the eigenspace K of v=0 in the continuous problem (see
reference [18]). In this reference, the following approximation result has also been
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proved under reasonable hypotheses on the regularity of the three-dimensional
domains.

Let v1 Ev2 E · · ·Evn E · · · and vh1 Evh2 E · · ·EvhNh be the strictly positive
eigenfrequencies of the continuous and the discrete problems, respectively (in both
cases repeated as many times as their multiplicity). Then there exists a constant r
between 0 and 1 such that

=vn −vhn =ECh2r.

This property shows, in particular, that no spurious mode can arise. Moreover,
the nth strictly positive eigenfrequency of the discrete problem approximates that
of the continuous one with an error of order h2r, which depends on the geometry
of both domains, VF and VS . Let us remark that, for instance, for a convex fluid
domain, the constant r determining the order of convergence is the same as that
for the computation of the vibration modes of the structure in vacuo by using
classical four-node linear elements.

4. MATRICIAL DESCRIPTION

In the previous section, a discrete formulation of our problem has been stated.
Now, a matricial description of it is given and it is shown that it is a well posed
symmetric generalized eigenvalue problem involving sparse matrices.

For the sake of simplicity, meshes for the solid and the fluid are considered,
which are compatible on the interface. However, it is important to notice that this
is not at all a requirement of the method. Indeed, the interface pressure P could
be discretized by using a triangulation on the interface independent of the fluid
and solid meshes.

Let us call U	 h , W	 h , P	 h , Y	 h and Z	 h the vectors of nodal components of Uh , Wh ,
Ph , Yh and Zh , respectively. The matrices associated with the bilinear forms in the
variational formulation are defined by

Z	 t
hKSW	 h =gVS

s(Wh ):o(Zh ) dx, Z	 t
hMSW	 h =gVS

rsWh · Zh dx,

Y	 t
hKFU	 h =gVF

rFc2 div Uh div Yh dx Y	 t
hMFU	 h =gVF

rFUh · Yh dx,

Z	 t
hCP	 h =gGI

PhZh · n dG, Y	 t
hDP	 h =gGI

PhYh · ndG.

KS and MS are the standard stiffness and mass matrices of the solid, respectively;
KF and MF are the corresponding ones for the fluid. Notice that the order of the
two latter is NF ×NF , with NF being the total number of faces of the fluid mesh;
moreover they are highly sparse because only a maximum of seven entries per row
can be different from zero (this corresponds to the number of faces of two adjacent
tetrahdedra).
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On the other hand, C and D are the coupling matrices of the interface pressure
with the solid and the fluid, respectively. Both are very sparse too. Indeed D is
an NF ×NI rectangular matrix, with NI being the number of faces on the fluid-solid
interface. Each column of D has exactly only one non-zero entry. To describe more
precisely the structure of this matrix assume for simplicity that the degrees of
fredom in the fluid are numbered in such a way that the first NI ones correspond
to the faces on the interface. Then

d1

· · ·
D=G

G

G

G

G

F

f

dNI G
G

G

G

G

J

j

,

0

with di being the area of the ith face.
Similarly, C is an NS ×NI rectangular matrix, with NS being the number of

degrees of freedom of the solid mesh. Each column of C has at most nine non-zero
entries because this is the number of degrees of freedom at each face of the solid.

Problem (13, 14) is written in terms of these matrices in the following way:

2KS

0
Ct

0
KF

Dt

C
D
032W	 h

U	 h

P	 h3=v2
h2MS

0
0

0
MF

0

0
0
032W	 h

U	 h

P	 h3.
Both matrices in this eigenvalue problem are singular; however, by performing

a translation in the eigenvalues, it can be written in an equivalent more convenient
way:

2KS +MS

0
Ct

0
KF +MF

Dt

C
D
032W	 h

U	 h

P	 h3=(1+v2
h )2MS

0
0

0
MF

0

0
0
032W	 h

U	 h

P	 h3. (16)

As we show below, the matrix on the left hand side is now non-singular and,
consequently, it yields a well posed generalized eigenvalue problem. Furthermore,
both matrices of this problem are symmetric and highly sparse and, hence,
convenient for computational purposes

To prove the non-singularity of the matrix on the left hand side of equation (16),
assume that

2KS +MS

0
Ct

0
KF +MF

Dt

C
D
032W	 h

U	 h

P	 h3= 20003.
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Matrices KS +MS and KF +MF are clearly positive definite and hence
non-singular. Then

(KS +MS )W	 h +CP	 h =0cW	 h =−(KS +MS )−1CP	 h , (17)

(KF +MF )U	 h +DP	 h =0c U	 h =−(KF +MF )−1DP	 h , (18)

and

CtW	 h +DtU	 h =0c−[Ct(KS +MS )−1C+Dt(KF +MF )−1D]P	 h =0.

Since KS +MS and KF +MF are positive definite, one has

0=P	 t
h [Ct(KS +MS )−1C+Dt(KF +MF )−1D]P	 h

=(CP	 h )t(KS +MS )−1(CP	 h )+ (DP	 h )t(KF +MF )−1(DP	 h )

e a>CP	 h>2 + b>DP	 h>2.

Hence CP	 h =0 and DP	 h =0, and so, by using equations (17) and (18), one obtains
W	 h =0 and U	 h =0.

Finally, to see that P	 h =0, let Ph be the constant per face function defined on
GI having as nodal values the components of the vector P	 h . Let us take a function
Yh in the Raviart–Thomas finite element space such that Yh · n=Ph . One has

0=Y	 t
hDP	 h =gGI

PhYh · n dG=gGI

P2
h dG, (19)

and then P	 h =0. Hence, the matrix on the left hand side of equation (16) is
non-singular as claimed.

5. NUMERICAL RESULTS

In this section, numerical results obtained by a  implementation of the
finite element method described above are presented. This 3D code has been
previously validated by computing in plane vibration modes [18] and comparing
the results with those obtained with the analogous 2D code of reference [11].

For our numerical experiments three different geometries have been considered:
a thick cubic closed vessel (inner edges length 1·00 m, thickness 0·25 m) clamped

Figure 3. Thick cubic vessel.
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Figure 4. Thin cylinder.

by its bottom and completely filled by the fluid; a thin cylinder (height 3·5 m, inner
diameter length 2·0 m, thickness 0·1 m) clamped by both ends and also full of fluid;
a cubic cavity (inner edges length 1·00 m) completely filled by the fluid, with all
of its walls perfectly rigid except for that on its top which is a clamped plate
(thickness 0·05 m). Vertical and horizontal sections are shown in Figure 3 for the
cubic vessel, in Figure 4 for the cylinder and in Figure 5 for the rigid cavity covered
by a plate. To take advantage of the symmetry, we have considered a quarter of
the geometry in the first and third cases and an eighth in the second one, as shown
in each figure by the dashed lines.

In all cases steel has been used as the solid with the following physical
parameters: density rs =7700 kg/m3, Young’s modulus E=1·44×1011 Pa,
Poisson’s coefficient ns =0·35, whereas for the fluid we have considered water of
density rF =1000 kg/m3, and sound speed c=1430 m/s.

Figure 5. Rigid cavity covered by a plate.
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T 1

Water in a rigid cubic cavity

Mode Mesh 1 Mesh 2 Mesh 3 Extrapolated Exact

vF
001 4482·565 4488·129 4490·046 4492·441 4492·447

vF
100 4482·652 4488·161 4490·061 4492·439 4492·477

vF
010 4483·877 4488·842 4490·484 4492·395 4492·477

vF
101 6356·154 6354·522 6353·999 6353·423 6353·323

vF
110 6358·052 6355·361 6354·462 6353·400 6353·323

vF
011 6358·800 6355·627 6354·578 6353·412 6353·323

vF
111 7803·508 7790·985 7786·666 7781·260 7781·199

Each example has been solved by using differently refined meshes in order to
study the convergence behavior of the method. These meshes have been obtained
by creating successively refined uniform triangulations of the boundaries and using
a general 3D finite element package to generate the tetrahedral meshes in the
interior of the domains. For a given mesh, d.o.f. denotes the total number of
degrees of freedom (i.e., the sum of those of the solid, the fluid and the interface).

For the first example, three different tetrahedral meshes have been used to
discretize a quarter of the thick cubic vessel and the fluid inside: Mesh 1
d.o.f.=3463 (1575 in the solid, 1696 in the fluid and 192 on the interface); Mesh
2 d.o.f.=10 498 (4512 in the solid, 5544 in the fluid and 432 on the interface);
Mesh 3, d.o.f.=23 491 (9795 in the solid, 12 928 in the fluid and 768 on the
interface).

First, the vibration modes corresponding to the lowest eigenfrequencies of each
uncoupled problem have been computed: namely, either the fluid contained in a
perfectly rigid solid or the solid without any fluid inside. vF

i denotes the
eigenfrequencies of the fluid in a rigid cavity and vS

i those of the solid in vacuo.
Each vibration mode of the coupled problem is a perturbation of one of these;
thus, the corresponding eigenfrequencies are denoted either by vE

i or vS
i , according

to which they are a perturbation of, and are called, ‘‘fluid’’ or ‘‘solid’’ eigenmodes,
respectively.

For the fluid in a rigid cavity, the computed vibration frequencies are compared
with the exact ones which, in this case, are analytically known; in fact, for a cubic
cavity with inner edges of length L, the free vibration angular frequencies are

vF
lmn =(cp/L)zl 2 +m2 + n2, l, m, n=0, 1, 2, . . . , l+m+ n$ 0,

with corresponding pressure amplitudes

P(x1, x2, x3)= cos (lpx1/L) cos (mpx2/L) cos (npx3/L), 0Q x1, x2, x3 QL.

Table 1 shows the values of the lowest eigenfrequencies (in rad/s) computed with
each mesh and the more accurate approximation that is obtained by extrapolating
them. The table also includes the corresponding exact vibration frequencies.

Notice that the values obtained by extrapolating the results on these three
meshes agree with the exact ones almost with five significant digits.
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T 2

‘‘Fluid’’ elastoacoustic and uncoupled (rigid cavity) modes for a cubic
vessel

Steel vessel Rigid cavity

Mode Mesh 1 Mesh 2 Mesh 3 Mesh 3

vF
001 4619·454 4571·933 4579·967 4490·046

vF
100 4238·184 4193·331 4163·331 4163·296

vF
010 4231·182 4186·356 4158·101 4490·484

vF
101 5906·880 5717·052 5603·941 6353·999

vF
110 6150·860 6036·036 5984·662 6354·462

vF
011 5896·335 5716·762 5603·425 6354·578

vF
111 7558·874 7487·871 7748·380 7786·666

On the other hand, because of the symmetry of the geometry, the two lowest
exact vibration frequencies has multiplicity 3. However, since the meshes have
been created by a general 3D generator, they do not preserve this symmetry and
hence the corresponding computed frequencies differ slightly.

Note also that the first three frequencies converge from below, while the next
three converge from above. This is something typical of displacement formulations
(see, for instance, Table 1 in reference [13]); it is due to the fact that the lowest
eigenvalue of the mathematical problem is zero with infinite multiplicity and,
because of this, the min–max principles yielding convergence from above in other
vibration problems do not apply in this case.

Table 2 shows the computed lowest eigenfrequencies of the ‘‘fluid’’ modes for
the coupled problem: water contained in the steel cavity. The corresponding
uncoupled eigenfrequencies (i.e., within a perfectly rigid cavity) computed on the
finest mesh are also included to appreciate the effect of the elastic response of the
solid walls.

Note that the computed values of the first eigenfrequency in Table 2 do not
behave monotonically as with all the other modes. This is due to a resonance effect
with the ‘‘solid’’ eigenmode vS

6 in Table 3. In fact, both vibration modes have the

T 3

‘‘Solid’’ coupled and uncoupled (in vacuo) modes for a cubic
steel vessel

Filled with water
ZXXXXXXXCXXXXXXXV In vacuo

Mode Mesh 1 Mesh 2 Mesh 3 Mesh 3

vS
1 1624·671 1581·248 1563·084 1595·985

vS
2 2598·815 2531·345 2503·574 2507·669

vS
3 3631·327 3532·999 3477·217 3717·577

vS
4 5036·372 4969·426 4937·061 4626·765

vS
5 4728·898 4565·646 4483·854 4677·719

vS
6 4896·822 4595·293 4414·306 4786·102
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Figure 6. Cube, mode vS
1 ; deformed structure.

same symmetry and very close frequencies. This is particularly true for the values
computed on Mesh 2 and hence, because of the typical ‘‘veering’’ phenomenon (see
reference [1]), these values tend to separate from each other.

Table 3 shows analogous results to those of Table 2 for the ‘‘solid’’ vibration
modes. Note that, for the solid in vacuo, the method reduces to the classical
computation with four-node linear tetrahedral elements.

The good convergence observed in these tables shows that the lowest
elastoacoustic vibration modes can be reliably computed with this method.

Figure 7. Cube, mode vS
1 ; pressure in the fluid.
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Figure 8. Cube, mode vS
2 ; deformed structure.

This example is concluded by showing in Figures 6–11 the deformed structure
and the fluid pressure field for three vibration modes of the coupled problem.

For the second example, the previous steps have been repeated with the thin
cylinder. Note that this case is not covered by the theory in reference [18] since
the solid is not polyhedral. However, the numerical results below show that the
performance of the method is as good as for polyhedral geometries.

Figure 9. Cube, mode vS
2 ; pressure in fluid.
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Figure 10. Cube, mode vF
001; deformed structure.

Again three increasingly refined meshes have been used for the eighth of the
cylinder and the fluid inside: Mesh 1, d.o.f.=1068 (240 in the solid, 772 in the
fluid and 56 on the interface); Mesh 2, d.o.f.=7215 (1215 in the solid, 5776 in
the fluid and 224 on the interface); Mesh 3, d.o.f.=22 980 (3432 in the solid,
19 044 in the fluid and 504 on the interface).

The exact eigenmodes for the uncoupled problem of a fluid contained in a
cylindrical rigid cavity can be also analytically computed; the free vibration
angular frequencies are given in this case by

cpl
H

, n=m=0, l=1, 2, 3, . . .

vF
lnm =g

G

G

F

f
cXp2l 2

H2 +
z2

nm

R2 , l, n=0, 1, 2, . . . , m=1, 2, . . .
,

where R and H are the radius and the height of the cylinder (in our case R=1 m
and H=3·5 m) and znm is the mth positive root of the derivative of the first kind
Bessel function Jn (z).

Table 4 shows that the convergence for the vibration modes of the fluid is
excellent.

Table 5 shows the computed frequencies of the ‘‘fluid’’ modes for water
contained in the thin steel cylinder. Once more the convergence is very good. As
in Table 2, the corresponding uncoupled modes computed with the finest mesh are
also included for comparison.

The eigenfrequencies of three vibration ‘‘solid’’ modes of the cylinder filled with
water and in vacuo have also been computed.
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Figure 11. Cube, mode vF
001; pressure in the fluid.

The poor performance observed in Table 6, namely the large variations between
the eigenfrequencies computed with each mesh (in particular for vS

1 and vS
3 ), is

a defect neither of the elements used for the fluid nor of the methodology proposed
to impose the kinematic constraints. In fact, for the uncoupled problem of the
cylinder in vacuo these variation are equally large and, in this case our method

T 4

Water in a rigid cylindrical cavity

Mode Mesh 1 Mesh 2 Mesh 3 Extrapolated Exact

vF
100 1282·048 1283·184 1283·396 1283·567 1283·565

vF
200 2554·990 2564·085 2565·777 2567·139 2567·130

vF
011 2670·045 2642·217 2637·051 2632·906 2632·916

vF
111 2964·963 2937·717 2932·893 2929·238 2929·127

T 5

‘‘Fluid’’ elastoacoustic and uncoupled (rigid cavity) modes for a
cylindrical vessel

Steel vessel
ZXXXXXXXCXXXXXXXV Rigid cavity

Mode Mesh 1 Mesh 2 Mesh 3 Mesh 3

vF
100 1188·443 1166·649 1158·687 1283·396

vF
200 2348·552 2281·999 2255·354 2565·777

vF
011 2948·532 2775·609 2695·288 2637·051

vF
111 2338·165 2142·013 2085·688 2932·893
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T 6

‘‘Solid’’ coupled and uncoupled (in vacuo) modes for a cylindrical steel vessel

Filled with water In vacuo
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Mode Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

vS
1 1701·500 1153·671 1009·377 2089·007 1409·556 1232·094

vS
2 1311·843 1237·666 1219·264 1745·492 1648·411 1624·648

vS
3 4003·714 2291·144 1707·784 4833·060 2697·915 2001·229

Table 5 shows the computed frequencies of the ‘‘fluid’’ modes for water
contained in the thin steel cylinder. Once more the convergence is very good. As
in Table 2, the corresponding uncoupled modes computed with the finest mesh are
also included for comparison.

The eigenfrequencies of three vibration ‘‘solid’’ modes of the cylinder filled with
water and in vacuo have also been computed.

The poor performance observed in Table 6, namely the large variations between
the eigenfrequencies computed with each mesh (in particular for vS

1 and vS
3 ), is

a defect neither of the elements used for the fluid nor of the methodology proposed
to impose the kinematic constraints. In fact, for the uncoupled problem of the
cylinder in vacuo these variation are equally large and, in this case our method
reduces to compute the vibration modes of the structure by classical four-node
tetrahedral elements. These results clearly show the need for combining
Raviart–Thomas elements for the fluid with adequate 2D models of thin structures
as is done below in the case of a plate.

Figure 12. Eighth of the cylinder, mode vS
1 ; deformed structure.
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Figure 13. Eighth of the cylinder, mode vS
1 ; pressure in the fluid.

This example is concluded by showing in Figures 12–17 one-eighth of the
deformed cylinder and the fluid pressure field for three modes of this coupled
problem.

The third problem considered consists of computing the vibration modes of a
plate in contact with a fluid. The Reissner–Mindlin model was used for the bending
of the plate, discretized by MITC3, a locking free finite element method introduced
by Bathe and Dvorkin [19]. In this method, the transversal displacements of the

Figure 14. Eighth of the cylinder, mode vS
2 ; deformed structure.
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Figure 15. Eighth of the cylinder, mode vS
2 ; pressure in the fluid.

plate are discretized by piecewise linear functions which have been coupled with
Raviart–Thomas elements for the fluid displacements, as in the examples above.
A thorough theoretical analysis of this problem can be found in reference [20],
where it is proved that the coupled method does not lock as the plate thickness
becomes small and hence that it can be reliably used no matter how thin the
plate is.

Figure 16. Eighth of the cylinder, mode vF
100; deformed structure.
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Figure 17. Eighth of the cylinder, mode vF
100; pressure in the fluid.

Once more, three differently refined meshes have been used: Mesh 1,
d.o.f.=1859 (131 in the plate, 1696 in the fluid and 32 on the interface);
Mesh 2, d.o.f.=5883 (267 in the plate, 5544 in the fluid and 72 on the interface);
Mesh 3, d.o.f.=13 507 (451 in the plate, 12 928 in the fluid and 128 on the
interface).

T 7

Elastoacoustic and uncoupled modes for a plate–fluid system

Plate–fluid coupled modes
ZXXXXXXXCXXXXXXXV Uncoupled modes

Mode Mesh 1 Mesh 2 Mesh 3 Mesh 3

vS
1 2177·939 2170·651 2167·922 2327·212

vF
001 4890·610 4854·706 4841·131 4490·046

vF
100 4885·135 4857·721 4847·314 4490·061

vF
010 4884·680 4857·568 4847·249 4490·484

vS
2 3545·822 3525·596 3518·040 4689·178

vS
3 3547·250 3526·172 3518·343 4689·178

vF
101 6758·293 6694·080 6669·856 6353·999

vF
110 6726·668 6675·258 6656·259 6354·462

vF
011 6758·265 6694·111 6669·870 6354·578

vS
4 5529·026 5449·373 5418·194 6826·651

vF
111 8273·536 8175·172 8138·963 7786·666

vS
5 6943·492 6866·441 6831·714 8197·654

vS
6 7741·467 7465·741 7355·582 8374·716
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Figure 18. Fluid–plate, mode vS
1 ; deformed structure.

Table 7 shows the computed lowest frequencies of the coupled system. Also
included are the frequencies of the corresponding uncoupled modes for
comparison. The table shows the excellent performance of the method.

Finally, Figures 18–23 show the deformed plate and the pressure field for some
vibration modes in the previous table.

Figure 19. Fluid–plate, mode vS
1 ; pressure in the fluid.
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Figure 20. Fluid–plate, mode vS
2 ; deformed structure.

6. CONCLUSIONS

In this paper a finite element method has been proposed to solve 3D
elastoacoustic spectral problems. It involves a formulation where the fluid as well
as the solid are described by their displacement fields. The main advantage with
respect to standard finite element methods is that it yields symmetric sparse
eigenvalue problems without introducing numerical spurious eigenmodes.

Figure 21. Fluid–plate, mode vS
2 ; pressure in the fluid.
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Figure 22. Fluid–plate, mode vF
100; deformed structure.

Moreover the coupling conditions on the fluid–solid interface are very easily
imposed by using the interface pressure as a Lagrange multiplier, allowing
eventually the use of non-compatible fluid and solid meshes.

For a given mesh, the present method is more expensive in terms of degrees of
freedom if compared to other symmetric methods based on pressure/potential
formulations for the fluid or to unsymmetric methods based on pressure

Figure 23. Fluid–plate, mode vF
100; pressure in the fluid.
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formulations. However, the matrices obtained with Raviart–Thomas elements are
much more sparse than those of these other methods: they have at most seven non
null entries per row versus around 20 for four-node tetrahedral elements.
Therefore, the overall computational cost could be significantly reduced if iterative
methods based on matrix vector multiplications are used to solve the
eigenproblems.
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